
Class 4: Functions and Loops
Date: 02/10/2019

Warm-Up
If you don’t remember how to open up your text editor, look back to Worksheet 2! Or, just
raise your hand.

When you’re ready to start for the day, your first job is to make a program that asks the
user to guess what Sally is selling, then uses an If/Then relationship to check if they
guessed the right answer. The right answer should be “seashells”!

Do you know what Sally is selling by the seashore?

seashells

That’s right!!

If the user types in anything other than “seashells,” then this should happen in your
program:

Do you know what Sally is selling by the seashore?

tacos

No, sorry…

Don’t make two separate programs for this exercise! You want to create a single
program that changes its outcome depending on what the user types in as their answer.

2

Functions: What are they?
At this point in the class, you’ve most likely started to realize that your code is becoming
quite long and a bit unorganized. Today, we’ll be learning a coding practice that will
allow us to develop more organized and efficient code: functions. You can think of a
function as a sort of mini-program, designed to accomplish some task, that is run within
your larger, “main” program. Let’s take a look at a quick example:

def main():

print(“Hey!”)

main()

If you were to run it, the above function will simply print the following:

Hey!

Now, this seems like a roundabout way to make such a simple program! But, as it turns
out, using this method in your programming will allow your code to become much more
flexible and cleaner. Let’s take a look at some important notes to understand how,
exactly, this above program works:

● The function (mini-program) above that we are using is called main(). A
function will always be followed by closed parentheses!

● The abbreviation “def” before the main() function stands for “define.” This is
where you create a “definition” for your function—in other words, this is where you
write out the code for that particular mini-program. In our case, the code for our
main() function is just a simple print()statement, that prints “Hey!” to the
terminal!

● The computer doesn’t actually run definitions, though, until you explicitly tell it to
do so. That is, when you use the def qualifier before defining a function, you’re
essentially teaching the computer the definition of your function, NOT instructing
the computer to run it (just yet).

● In order to actually execute this function (mini-program), we must call the
function. To do a function call, all we have to do is write out the name of the
function, followed by parentheses. That’s it! In this particular program, the first
call is a call to the main() function, found on the very last (third) line.

3

● Function calls can only be used after the function is already defined! When a
computer runs a program, it reads from top to bottom. You can’t instruct the
computer to execute your function until you’ve taught the computer the definition
of that function, first! It’s good practice to keep all of your function definitions
near the top of your program.

Take a look at this example program I put together that uses both functions and If/Then
relationships! Remember that the computer will READ each section that starts with def,
but won’t run it until it comes across a call for that function. The first call is to the
main() function, on the very bottom line.

def joke():

print(“How do you get a tissue to dance?”)

print(“You put a little BOOGIE in it!”)

def riddle():

print(“What has hands but doesn’t clap?”)

print(“A clock!”)

def main():

print(“Would you like to hear a joke or a riddle?”)

answer = input()

if (“joke” in answer):

joke()

elif (“riddle” in answer):

riddle()

main()

Here’s what the program will do when it is run!

Would you like to hear a joke or a riddle?

joke

How do you get a tissue to dance?

You put a little BOOGIE in it!

4

Believe it or not, but we’ve actually been secretly using functions since our very first
class! Both print() and input() are two examples of built-in functions, which are
functions defined by the Python language packages and libraries themselves. When we
ask our computer to perform a “call” on one of these functions, the computer uses
definitions that are pre-programmed in these libraries! When we make our own
functions, we call them user-defined.

“For” Loops
Next, we’ll look into another topic in computer programming: loops! Computers are
especially convenient and useful for us because of their ability to perform complicated
tasks in a very short amount of time. In particular, a computer can use loops to
automatically and quickly perform any number of repetitive tasks!

Let’s say I’d like to make a program that prints the word “banana” exactly five times. But,
I don’t want to write out 5 separate print() statements, each saying “banana.” In a
for loop, I can tell the computer that I would like a specific task to be repeated—in this
case, to print out “banana.” Let’s write out the following code:

for x in range(5):

print(“banana”)

Now try running the program:

banana

banana

banana

banana

banana

You are totally free to change the value in range(5) to any number that you’d like. You
could print out 10 bananas, 100, 500, 2000, or more (That’s a lot of bananas)!

***PLEASE be careful not to overwork your computer! When using loops, it’s possible for
your program to crash if you set your number of iterations TOO HIGH!***

5

Homework + Extra Learning
Your homework for the week will be to pull together everything you’ve learned so far, and
take a shot at organizing your Adventure code using functions. It might help to create a
new document, so that your original code is backed up!

Next-Week Snapshot: “While” Loops
Don’t worry if you don’t have the time to get to this step; we’ll cover it next week!

When we want to run our code for a specific number of iterations, for loops are a great
go-to. But, what if you want the loop to last indefinitely, that stops only when a certain
condition is met? In cases like these, we’ll use a while loop! Let’s try this:

print(“Do you want a banana?”)

answer = input()

while(“yes” in answer):

print(“You eat the banana.”)

print(“Would you like another?”)

answer = input()

The above while loop will continue repeating forever while “yes” is found in the
variable (container) answer. Next week, we’ll review in more detail all that this program
is doing, but in the meantime, try to figure out what is happening, yourself!

Do you want a banana?

yes

You eat the banana.

Would you like another?

yes

You eat the banana.

Would you like another?

no

